Showing posts with label UMTS. Show all posts
Showing posts with label UMTS. Show all posts

Wednesday, March 13, 2013

Access Control Class & Class-15 SIM Cards - Part 1

View S.Sunil Kumar's profile on LinkedIn

ACC & Class-15 SIM cards Continued here : Part-2 



LTE L3 SIB 2 Message from Live Network, Access Barring is not enabled in the eNodeB. More specifically in MME.

References : 3GPP TS 36.331


*** Layer 3 Message type: System Information (DL-BCCH-SCH)

Device: MS1
Time : 12:28:34.538
Vendor Header
  Length : 66
  Log Code (Hex) : 0xB0C0
  HW Timestamp : (9752550.00 ms) 02:42:32.550
    1.25 ms fraction : 0.00
    CFN : 8
    1.25 ms counter : 840230522040
  RRC Signaling Header
    Log Packet Version : 2
    RRC Release Number : 9.5.0
    Radio Bearer Id : 0
    Physical Cell Id : 64
    E-ARFCN : XXXXX
    System Frame Number
      System frame number : N/A
      Sub frame number : N/A
    Message Type : BcchSchDownlink
    Message Length : 41
criticalExtensions : systemInformation-r8
systemInformation-r8
  sib-TypeAndInfo :
    [0 ] :
      noName : choiceInSequence
      choiceInSequence : sib2
      sib2
        radioResourceConfigCommon
          rach-ConfigCommon
            numberOfRA-Preambles : n52
            sizeOfRA-PreamblesGroupA : n28
            messageSizeGroupA : b56
            messagePowerOffsetGroupB : dB10
            powerRampingStep : dB2
            preambleInitialReceivedTargetPower : dBm-104
            preambleTransMax : n10
            ra-ResponseWindowSize : sf10
            mac-ContentionResolutionTimer : sf64
            maxHARQ-Msg3Tx : 5
          bcch-Config
            modificationPeriodCoeff : n2
          pcch-Config
            defaultPagingCycle : rf128
            nB : oneT
          prach-Config
            rootSequenceIndex : 265
            prach-ConfigInfo
              prach-ConfigIndex : 6
              highSpeedFlag : False
              zeroCorrelationZoneConfig : 9
              prach-FreqOffset : 9
          pdsch-ConfigCommon
            referenceSignalPower : 15
            p-b : 1
          pusch-ConfigCommon
            n-SB : 4
            hoppingMode : interSubFrame
            pusch-HoppingOffset : 26
            enable64QAM : True
            ul-ReferenceSignalsPUSCH
              groupHoppingEnabled : False
              groupAssignmentPUSCH : 0
              sequenceHoppingEnabled : False
              cyclicShift : 0
          pucch-ConfigCommon
            deltaPUCCH-Shift : ds2
            nRB-CQI : 1
            nCS-AN : 0
            n1PUCCH-AN : 10
          soundingRS-UL-ConfigCommon
            SoundingRS-UL-ConfigCommon : setup
            srs-BandwidthConfig : bw2
            srs-SubframeConfig : sc9
            ackNackSRS-SimultaneousTransmission : True
            srs-MaxUpPts: true
          uplinkPowerControlCommon
            p0-NominalPUSCH : -67
            alpha : al07
            p0-NominalPUCCH : -105
            deltaFList-PUCCH
              deltaF-PUCCH-Format1 : deltaF0
              deltaF-PUCCH-Format1b : deltaF3
              deltaF-PUCCH-Format2 : deltaF1
              deltaF-PUCCH-Format2a : deltaF2
              deltaF-PUCCH-Format2b : deltaF2
            deltaPreambleMsg3 : 0
          ul-CyclicPrefixLength : len1
        ue-TimersAndConstants
          t300 : ms200
          t301 : ms200
          t310 : ms1000
          n310 : n10
          t311 : ms10000
          n311 : n1
        additionalSpectrumEmission : 1
        timeAlignmentTimerCommon : sf1920
    [1 ] :
      noName : choiceInSequence
      choiceInSequence : sib3
      sib3
        q-Hyst : dB2
        mobilityStateParameters
          t-Evaluation : s60
          t-HystNormal : s30
          n-CellChangeMedium : 4
          n-CellChangeHigh : 8
        sf-Medium : dB0
        sf-High : dB0
        s-NonIntraSearch : 9
        threshServingLow : 6
        cellReselectionPriority : 7
        q-RxLevMin : -64
        s-IntraSearch : 29
        presenceAntennaPort1 : False
        neighCellConfig
          Binary string (Bin) : 01
            [0 ] : 0
            [1 ] : 1
        t-ReselectionEUTRA : 1
        t-ReselectionEUTRA-SF
          sf-Medium : lDot0
          sf-High : oDot75
 



*** Layer 3 Message type: System Information Block 2

Device: MS1
Time : 11:48:41.907
radioResourceConfigCommon
  rach-ConfigCommon
    numberOfRA-Preambles : n52
    sizeOfRA-PreamblesGroupA : n28
    messageSizeGroupA : b56
    messagePowerOffsetGroupB : dB10
    powerRampingStep : dB2
    preambleInitialReceivedTargetPower : dBm-104
    preambleTransMax : n10
    ra-ResponseWindowSize : sf10
    mac-ContentionResolutionTimer : sf64
    maxHARQ-Msg3Tx : 5
  bcch-Config
    modificationPeriodCoeff : n2
  pcch-Config
    defaultPagingCycle : rf128
    nB : oneT
  prach-Config
    rootSequenceIndex : 175
    prach-ConfigInfo
      prach-ConfigIndex : 6
      highSpeedFlag : False
      zeroCorrelationZoneConfig : 9
      prach-FreqOffset : 9
  pdsch-ConfigCommon
    referenceSignalPower : 15
    p-b : 1
  pusch-ConfigCommon
    n-SB : 4
    hoppingMode : interSubFrame
    pusch-HoppingOffset : 26
    enable64QAM : True
    ul-ReferenceSignalsPUSCH
      groupHoppingEnabled : False
      groupAssignmentPUSCH : 0
      sequenceHoppingEnabled : False
      cyclicShift : 0
  pucch-ConfigCommon
    deltaPUCCH-Shift : ds2
    nRB-CQI : 1
    nCS-AN : 0
    n1PUCCH-AN : 10
  soundingRS-UL-ConfigCommon
    SoundingRS-UL-ConfigCommon : setup
    srs-BandwidthConfig : bw2
    srs-SubframeConfig : sc0
    ackNackSRS-SimultaneousTransmission : True
    srs-MaxUpPts: true
  uplinkPowerControlCommon
    p0-NominalPUSCH : -67
    alpha : al07
    p0-NominalPUCCH : -105
    deltaFList-PUCCH
      deltaF-PUCCH-Format1 : deltaF0
      deltaF-PUCCH-Format1b : deltaF3
      deltaF-PUCCH-Format2 : deltaF1
      deltaF-PUCCH-Format2a : deltaF2
      deltaF-PUCCH-Format2b : deltaF2
    deltaPreambleMsg3 : 0
  ul-CyclicPrefixLength : len1
ue-TimersAndConstants
  t300 : ms200
  t301 : ms200
  t310 : ms1000
  n310 : n10
  t311 : ms10000
  n311 : n1
additionalSpectrumEmission : 1
timeAlignmentTimerCommon : sf1920




Through this analysis the major principles that I have understood are given below.

1.     ACC-Access Control Class Feature introduced to control various Mobile users access in to GSM Network. The same is extended to 3G/4G.
2.    Normal Customers are programmed with Access Class 0-9 and allowed in HPLMN/VPLMN
3.    PLMN Team/Staffs are programmed with Access Class 11/15 allowed Only in HPLMN.
4.    Access Class 12/13/14 allowed to roam in HPLMN & VPLMN. (No MCCMNC Check)
5.    Some MS/UE Vendors manufacture their equipment to support only ACC-0 to 9.
6.    EFACC – A 2 byte information stored in each SIM’s ROM which will be transferred to MS/UE when it is powered on. Ref : 3GPP TS 22.011
7.    System Info Type 3 (GSM/WCDMA) broadcasted from the network will carry the barred class info.In case of LTE/LTE-A it will be System Info Type 2



[External Blogs were failing to keep the Blog Material. So I have used the Mpirical.com’s forum.]
Anyway I have re-posted it here... for everybody's reference...
References : 
http://www.emsec.rub.de/media/crypto/attachments/files/2011/04/sim_card_security.pdf



I will be posting the details of how this can be used for commercial purpose/social responsibilities/ network maintenance activities....in upcoming posts....



View S.Sunil Kumar's profile on LinkedIn

Monday, February 11, 2013

Network Architecture Evolution - 1G to 4G



As we can see in the above diagram, aprt from transport technology migration from TDM to "All-IP"  LTE/4G architecture retains many similarity to 1G - AMPS Network. 

The major difference is that the Central Core (i.e. MTSO) in AMPS was handling both User and Control Planes. But in 4G they are separated to allow independent growth and modernization along with extensive reduction in "LATENCY".

LATENCY was not at all a factor during 1G or Initial 2G Periods. 

Since LTE is more of a "DATA" network and supports Voice in the form of VoIP, it provides the flexibility in using the Voice CODECS  depending upon various factors. But 2G Networks are still having a fixed rate/codec (sets) due to their radio access technology.

Eventhough GSM networks are suffering the lack of flexibility like LTE/LTE-A/3G networks, there are some steps taken by major vendors to revive this market based on the interest from existing 2G Only operators/ the ones who has a license in hand.

There are many hurdles in the form of existing 2G operator to become a LTE Operator. May be a regulatory/license obligation/business viability can halt them.

From my opinion, Voice is still going to rule for a while in the form of 2G Networks.The proof, Single Radio Voice Call Continuity (SRVCC) /VoLTE are developed not only to provide a smooth migration, also will help 4G Operators to offload all their Voice Service demand from their customers to 2G Networks.

So Technology oriented licensing which cornered the 2G Operators hsa a greater chance in reviving their business in the form tie ups with 4G Operators.

Reference :Telefónica makes first multivendor VoLTE-to-3G call handover

Reference : US Wireless Carriers Move to New Technology—for Voice



View S.Sunil Kumar's profile on LinkedIn 

 

Sunday, October 14, 2012

Access Control Class & Class-15 SIM Cards - Part 2

With reference to my earlier post

Following is the description of 3 identified usage possibilities of ACC feature in live 2G-GSM/3G-WCMDA networks.


Figure 1 : Commercial Usage of ACC Feature

Normally the indoor sites allotted to corporate customers in an important location of a city is good enough to serve the customers (Corp. Mainly) during 9AM to 6PM. But most of networks where I have worked, the peak busy hour starts from 5~6 PM only and lasts up to 11 ~ 12 PM.During which the indoor coverage/IBS solution capacity unnecessarily wasted.Either they will be idle / used at minimum level.

Instead those corp. customer indoor sites  should be a microcell with some external exposure. Corp. customers to have Class 15 (Example) SIM Cards. During morning hours these particular indoor sites can be configured to serve only those for CLASS-15 SIM cards.And in evening should be configured to allow all sim class. Such optimum usage will help operator to leverage those indoor BTS/NodeBs (i.e Infrastructure) . to handle those excessive  traffic at Busy Hour.

Figure 2 : Disaster Recovery Usage of ACC Feature

During any disaster situation in certain countries it is evident from past experiences, it will be better to cease the public communications in order to speed up the recovery actions and streamline safety of public.Also helps to prevent  unnecessary rumor based mis-behavior from public or from a particular segment of public.

So all BTS/NodeBs to be configured to serve the Class-1X which is allotted for Public Safety Organizations based on a pre-agreement.

This can be done for a particular geography/selected areas/cells in order to achieve quicker & un-interrupted recovery actions.


Figure 3 : Network Maintenance Usage of ACC Feature


The widely used model, doing all sort of maintenance activities like DT & Optimization etc while preventing customers from accessing the network through that particular BTS/s under maintenance and eventually avoids unnecessary disturbance to customers. 



    View S.Sunil Kumar's profile on LinkedIn